dojox/uuid/generateTimeBasedUuid.js

  • Provides:

    • dojox.uuid.generateTimeBasedUuid
  • dojox.uuid.generateTimeBasedUuid

    • type
      Function
    • parameters:
      • node: (typeof String)
        A 12-character hex string representing either a pseudo-node or
        hardware-node (an IEEE 802.3 network node).  A hardware-node
        will be something like "017bf397618a", always with the first bit
        being 0.  A pseudo-node will be something like "f17bf397618a",
        always with the first bit being 1.
        examples:
        string = dojox.uuid.generateTimeBasedUuid();
        string = dojox.uuid.generateTimeBasedUuid("017bf397618a");
        dojox.uuid.generateTimeBasedUuid.setNode("017bf397618a");
        string = dojox.uuid.generateTimeBasedUuid(); // the generated UUID has node == "017bf397618a"
    • source: [view]
       var uuidString = dojox.uuid.generateTimeBasedUuid._generator.generateUuidString(node);
       return uuidString; // String
    • summary
      This function generates time-based UUIDs, meaning "version 1" UUIDs.
    • description
      For more info, see
      http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt
      http://www.infonuovo.com/dma/csdocs/sketch/instidid.htm
      http://kruithof.xs4all.nl/uuid/uuidgen
      http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
      http://jakarta.apache.org/commons/sandbox/id/apidocs/org/apache/commons/id/uuid/clock/Clock.html
    • returns
      String
  • dojox.uuid.generateTimeBasedUuid.isValidNode

    • type
      Function
    • parameters:
      • node: (typeof String)
    • source: [view]
       var HEX_RADIX = 16;
       var integer = parseInt(node, HEX_RADIX);
       var valid = dojo.isString(node) && node.length == 12 && isFinite(integer);
       return valid; // Boolean
    • returns
      Boolean
    • summary
  • dojox.uuid.generateTimeBasedUuid.setNode

    • type
      Function
    • parameters:
      • node: (typeof String)
        A 12-character hex string representing a pseudoNode or hardwareNode.
    • source: [view]
       dojox.uuid.assert((node === null) || this.isValidNode(node));
       this._uniformNode = node;
    • summary
      Sets the 'node' value that will be included in generated UUIDs.
  • dojox.uuid.generateTimeBasedUuid.setNode._uniformNode

    • summary
  • dojox.uuid.generateTimeBasedUuid.getNode

    • type
      Function
    • source: [view]
       return this._uniformNode; // String (a 12-character hex string representing a pseudoNode or hardwareNode)
    • summary
      Returns the 'node' value that will be included in generated UUIDs.
    • returns
      String (a 12-character hex string representing a pseudoNode or hardwareNode)
  • dojox.uuid.generateTimeBasedUuid._generator

    • type
      Function
    • ?? initialized = 1 (debug: boolean) ??
    • source: [view]
      dojo.provide("dojox.uuid.generateTimeBasedUuid");


      dojox.uuid.generateTimeBasedUuid = function(/*String?*/ node){
       // summary:
       //  This function generates time-based UUIDs, meaning "version 1" UUIDs.
       // description:
       // For more info, see
       //  http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt
       //  http://www.infonuovo.com/dma/csdocs/sketch/instidid.htm
       //  http://kruithof.xs4all.nl/uuid/uuidgen
       //  http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20
       //  http://jakarta.apache.org/commons/sandbox/id/apidocs/org/apache/commons/id/uuid/clock/Clock.html
       // node:
       //  A 12-character hex string representing either a pseudo-node or
       //  hardware-node (an IEEE 802.3 network node). A hardware-node
       //  will be something like "017bf397618a", always with the first bit
       //  being 0. A pseudo-node will be something like "f17bf397618a",
       //  always with the first bit being 1.
       // examples:
       //  string = dojox.uuid.generateTimeBasedUuid();
       //  string = dojox.uuid.generateTimeBasedUuid("017bf397618a");
       //  dojox.uuid.generateTimeBasedUuid.setNode("017bf397618a");
       //  string = dojox.uuid.generateTimeBasedUuid(); // the generated UUID has node == "017bf397618a"
       var uuidString = dojox.uuid.generateTimeBasedUuid._generator.generateUuidString(node);
       return uuidString; // String
      };


      dojox.uuid.generateTimeBasedUuid.isValidNode = function(/*String?*/ node){
       var HEX_RADIX = 16;
       var integer = parseInt(node, HEX_RADIX);
       var valid = dojo.isString(node) && node.length == 12 && isFinite(integer);
       return valid; // Boolean
      };


      dojox.uuid.generateTimeBasedUuid.setNode = function(/*String?*/ node){
       // summary:
       //  Sets the 'node' value that will be included in generated UUIDs.
       // node: A 12-character hex string representing a pseudoNode or hardwareNode.
       dojox.uuid.assert((node === null) || this.isValidNode(node));
       this._uniformNode = node;
      };


      dojox.uuid.generateTimeBasedUuid.getNode = function(){
       // summary:
       //  Returns the 'node' value that will be included in generated UUIDs.
       return this._uniformNode; // String (a 12-character hex string representing a pseudoNode or hardwareNode)
      };



       
      dojox.uuid.generateTimeBasedUuid._generator = new function(){
       // Number of hours between October 15, 1582 and January 1, 1970:
       this.GREGORIAN_CHANGE_OFFSET_IN_HOURS = 3394248;

       
       // Number of seconds between October 15, 1582 and January 1, 1970:
       // dojox.uuid.generateTimeBasedUuid.GREGORIAN_CHANGE_OFFSET_IN_SECONDS = 12219292800;

       
       // --------------------------------------------------
       // Private variables:
       var _uuidPseudoNodeString = null;
       var _uuidClockSeqString = null;
       var _dateValueOfPreviousUuid = null;
       var _nextIntraMillisecondIncrement = 0;
       var _cachedMillisecondsBetween1582and1970 = null;
       var _cachedHundredNanosecondIntervalsPerMillisecond = null;

       
       // --------------------------------------------------
       // Private constants:
       var HEX_RADIX = 16;


       function _carry(/* array */ arrayA){
        // summary:
        //  Given an array which holds a 64-bit number broken into 4 16-bit
        //  elements, this method carries any excess bits (greater than 16-bits)
        //  from each array element into the next.
        // arrayA: An array with 4 elements, each of which is a 16-bit number.
        arrayA[2] += arrayA[3] >>> 16;
        arrayA[3] &= 0xFFFF;
        arrayA[1] += arrayA[2] >>> 16;
        arrayA[2] &= 0xFFFF;
        arrayA[0] += arrayA[1] >>> 16;
        arrayA[1] &= 0xFFFF;
        dojox.uuid.assert((arrayA[0] >>> 16) === 0);
       }


       function _get64bitArrayFromFloat(/* float */ x){
        // summary:
        //  Given a floating point number, this method returns an array which
        //  holds a 64-bit number broken into 4 16-bit elements.
        var result = new Array(0, 0, 0, 0);
        result[3] = x % 0x10000;
        x -= result[3];
        x /= 0x10000;
        result[2] = x % 0x10000;
        x -= result[2];
        x /= 0x10000;
        result[1] = x % 0x10000;
        x -= result[1];
        x /= 0x10000;
        result[0] = x;
        return result; // Array with 4 elements, each of which is a 16-bit number.
       }


       function _addTwo64bitArrays(/* array */ arrayA, /* array */ arrayB){
        // summary:
        //  Takes two arrays, each of which holds a 64-bit number broken into 4
        //  16-bit elements, and returns a new array that holds a 64-bit number
        //  that is the sum of the two original numbers.
        // arrayA: An array with 4 elements, each of which is a 16-bit number.
        // arrayB: An array with 4 elements, each of which is a 16-bit number.
        dojox.uuid.assert(dojo.isArray(arrayA));
        dojox.uuid.assert(dojo.isArray(arrayB));
        dojox.uuid.assert(arrayA.length == 4);
        dojox.uuid.assert(arrayB.length == 4);

       
        var result = new Array(0, 0, 0, 0);
        result[3] = arrayA[3] + arrayB[3];
        result[2] = arrayA[2] + arrayB[2];
        result[1] = arrayA[1] + arrayB[1];
        result[0] = arrayA[0] + arrayB[0];
        _carry(result);
        return result; // Array with 4 elements, each of which is a 16-bit number.
       }


       function _multiplyTwo64bitArrays(/* array */ arrayA, /* array */ arrayB){
        // summary:
        //  Takes two arrays, each of which holds a 64-bit number broken into 4
        //  16-bit elements, and returns a new array that holds a 64-bit number
        //  that is the product of the two original numbers.
        // arrayA: An array with 4 elements, each of which is a 16-bit number.
        // arrayB: An array with 4 elements, each of which is a 16-bit number.
        dojox.uuid.assert(dojo.isArray(arrayA));
        dojox.uuid.assert(dojo.isArray(arrayB));
        dojox.uuid.assert(arrayA.length == 4);
        dojox.uuid.assert(arrayB.length == 4);

       
        var overflow = false;
        if(arrayA[0] * arrayB[0] !== 0){ overflow = true; }
        if(arrayA[0] * arrayB[1] !== 0){ overflow = true; }
        if(arrayA[0] * arrayB[2] !== 0){ overflow = true; }
        if(arrayA[1] * arrayB[0] !== 0){ overflow = true; }
        if(arrayA[1] * arrayB[1] !== 0){ overflow = true; }
        if(arrayA[2] * arrayB[0] !== 0){ overflow = true; }
        dojox.uuid.assert(!overflow);

       
        var result = new Array(0, 0, 0, 0);
        result[0] += arrayA[0] * arrayB[3];
        _carry(result);
        result[0] += arrayA[1] * arrayB[2];
        _carry(result);
        result[0] += arrayA[2] * arrayB[1];
        _carry(result);
        result[0] += arrayA[3] * arrayB[0];
        _carry(result);
        result[1] += arrayA[1] * arrayB[3];
        _carry(result);
        result[1] += arrayA[2] * arrayB[2];
        _carry(result);
        result[1] += arrayA[3] * arrayB[1];
        _carry(result);
        result[2] += arrayA[2] * arrayB[3];
        _carry(result);
        result[2] += arrayA[3] * arrayB[2];
        _carry(result);
        result[3] += arrayA[3] * arrayB[3];
        _carry(result);
        return result; // Array with 4 elements, each of which is a 16-bit number.
       }


       function _padWithLeadingZeros(/* string */ string, /* int */ desiredLength){
        // summary:
        //  Pads a string with leading zeros and returns the result.
        // string: A string to add padding to.
        // desiredLength: The number of characters the return string should have.


        // examples:
        //  result = _padWithLeadingZeros("abc", 6);
        //  dojox.uuid.assert(result == "000abc");
        while(string.length < desiredLength){
         string = "0" + string;
        }
        return string; // string
       }


       function _generateRandomEightCharacterHexString() {
        // summary:
        //  Returns a randomly generated 8-character string of hex digits.


        // FIXME: This probably isn't a very high quality random number.

       
        // Make random32bitNumber be a randomly generated floating point number
        // between 0 and (4,294,967,296 - 1), inclusive.
        var random32bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 32) );

       
        var eightCharacterString = random32bitNumber.toString(HEX_RADIX);
        while(eightCharacterString.length < 8){
         eightCharacterString = "0" + eightCharacterString;
        }
        return eightCharacterString; // String (an 8-character hex string)
       }

       
       this.generateUuidString = function(/*String?*/ node){
        // summary:
        //  Generates a time-based UUID, meaning a version 1 UUID.
        // description:
        //  JavaScript code running in a browser doesn't have access to the
        //  IEEE 802.3 address of the computer, so if a node value isn't
        //  supplied, we generate a random pseudonode value instead.
        // node: An optional 12-character string to use as the node in the new UUID.
        if(node){
         dojox.uuid.assert(dojox.uuid.generateTimeBasedUuid.isValidNode(node));
        }else{
         if(dojox.uuid.generateTimeBasedUuid._uniformNode){
          node = dojox.uuid.generateTimeBasedUuid._uniformNode;
         }else{
          if(!_uuidPseudoNodeString){
           var pseudoNodeIndicatorBit = 0x8000;
           var random15bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 15) );
           var leftmost4HexCharacters = (pseudoNodeIndicatorBit | random15bitNumber).toString(HEX_RADIX);
           _uuidPseudoNodeString = leftmost4HexCharacters + _generateRandomEightCharacterHexString();
          }
          node = _uuidPseudoNodeString;
         }
        }
        if(!_uuidClockSeqString){
         var variantCodeForDCEUuids = 0x8000; // 10--------------, i.e. uses only first two of 16 bits.
         var random14bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 14) );
         _uuidClockSeqString = (variantCodeForDCEUuids | random14bitNumber).toString(HEX_RADIX);
        }

       
        // Maybe we should think about trying to make the code more readable to
        // newcomers by creating a class called "WholeNumber" that encapsulates
        // the methods and data structures for working with these arrays that
        // hold 4 16-bit numbers? And then these variables below have names
        // like "wholeSecondsPerHour" rather than "arraySecondsPerHour"?
        var now = new Date();
        var millisecondsSince1970 = now.valueOf(); // milliseconds since midnight 01 January, 1970 UTC.
        var nowArray = _get64bitArrayFromFloat(millisecondsSince1970);
        if(!_cachedMillisecondsBetween1582and1970){
         var arraySecondsPerHour = _get64bitArrayFromFloat(60 * 60);
         var arrayHoursBetween1582and1970 = _get64bitArrayFromFloat(dojox.uuid.generateTimeBasedUuid._generator.GREGORIAN_CHANGE_OFFSET_IN_HOURS);
         var arraySecondsBetween1582and1970 = _multiplyTwo64bitArrays(arrayHoursBetween1582and1970, arraySecondsPerHour);
         var arrayMillisecondsPerSecond = _get64bitArrayFromFloat(1000);
         _cachedMillisecondsBetween1582and1970 = _multiplyTwo64bitArrays(arraySecondsBetween1582and1970, arrayMillisecondsPerSecond);
         _cachedHundredNanosecondIntervalsPerMillisecond = _get64bitArrayFromFloat(10000);
        }
        var arrayMillisecondsSince1970 = nowArray;
        var arrayMillisecondsSince1582 = _addTwo64bitArrays(_cachedMillisecondsBetween1582and1970, arrayMillisecondsSince1970);
        var arrayHundredNanosecondIntervalsSince1582 = _multiplyTwo64bitArrays(arrayMillisecondsSince1582, _cachedHundredNanosecondIntervalsPerMillisecond);

       
        if(now.valueOf() == _dateValueOfPreviousUuid){
         arrayHundredNanosecondIntervalsSince1582[3] += _nextIntraMillisecondIncrement;
         _carry(arrayHundredNanosecondIntervalsSince1582);
         _nextIntraMillisecondIncrement += 1;
         if (_nextIntraMillisecondIncrement == 10000) {
          // If we've gotten to here, it means we've already generated 10,000
          // UUIDs in this single millisecond, which is the most that the UUID
          // timestamp field allows for. So now we'll just sit here and wait
          // for a fraction of a millisecond, so as to ensure that the next
          // time this method is called there will be a different millisecond
          // value in the timestamp field.
          while (now.valueOf() == _dateValueOfPreviousUuid) {
           now = new Date();
          }
         }
        }else{
         _dateValueOfPreviousUuid = now.valueOf();
         _nextIntraMillisecondIncrement = 1;
        }

       
        var hexTimeLowLeftHalf = arrayHundredNanosecondIntervalsSince1582[2].toString(HEX_RADIX);
        var hexTimeLowRightHalf = arrayHundredNanosecondIntervalsSince1582[3].toString(HEX_RADIX);
        var hexTimeLow = _padWithLeadingZeros(hexTimeLowLeftHalf, 4) + _padWithLeadingZeros(hexTimeLowRightHalf, 4);
        var hexTimeMid = arrayHundredNanosecondIntervalsSince1582[1].toString(HEX_RADIX);
        hexTimeMid = _padWithLeadingZeros(hexTimeMid, 4);
        var hexTimeHigh = arrayHundredNanosecondIntervalsSince1582[0].toString(HEX_RADIX);
        hexTimeHigh = _padWithLeadingZeros(hexTimeHigh, 3);
        var hyphen = "-";
        var versionCodeForTimeBasedUuids = "1"; // binary2hex("0001")
        var resultUuid = hexTimeLow + hyphen + hexTimeMid + hyphen +
           versionCodeForTimeBasedUuids + hexTimeHigh + hyphen +
           _uuidClockSeqString + hyphen + node;
        resultUuid = resultUuid.toLowerCase();
        return resultUuid; // String (a 36 character string, which will look something like "b4308fb0-86cd-11da-a72b-0800200c9a66")
       }
    • returns
      String|Boolean|String (a 12-character hex string representing a pseudoNode or hardwareNode)|Array with 4 elements, each of which is a 16-bit number.|string|String (an 8-character hex string)|String (a 36 character string, which will look something like "b4308fb0-86cd-11da-a72b-0800200c9a66")
    • summary
  • string

    • summary
  • dojox.uuid.generateTimeBasedUuid._generator.GREGORIAN_CHANGE_OFFSET_IN_HOURS

    • summary
  • dojox.uuid.generateTimeBasedUuid._generator.generateUuidString

    • type
      Function
    • parameters:
      • node: (typeof String)
        An optional 12-character string to use as the node in the new UUID.
    • source: [view]
        if(node){
         dojox.uuid.assert(dojox.uuid.generateTimeBasedUuid.isValidNode(node));
        }else{
         if(dojox.uuid.generateTimeBasedUuid._uniformNode){
          node = dojox.uuid.generateTimeBasedUuid._uniformNode;
         }else{
          if(!_uuidPseudoNodeString){
           var pseudoNodeIndicatorBit = 0x8000;
           var random15bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 15) );
           var leftmost4HexCharacters = (pseudoNodeIndicatorBit | random15bitNumber).toString(HEX_RADIX);
           _uuidPseudoNodeString = leftmost4HexCharacters + _generateRandomEightCharacterHexString();
          }
          node = _uuidPseudoNodeString;
         }
        }
        if(!_uuidClockSeqString){
         var variantCodeForDCEUuids = 0x8000; // 10--------------, i.e. uses only first two of 16 bits.
         var random14bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 14) );
         _uuidClockSeqString = (variantCodeForDCEUuids | random14bitNumber).toString(HEX_RADIX);
        }

       
        // Maybe we should think about trying to make the code more readable to
        // newcomers by creating a class called "WholeNumber" that encapsulates
        // the methods and data structures for working with these arrays that
        // hold 4 16-bit numbers? And then these variables below have names
        // like "wholeSecondsPerHour" rather than "arraySecondsPerHour"?
        var now = new Date();
        var millisecondsSince1970 = now.valueOf(); // milliseconds since midnight 01 January, 1970 UTC.
        var nowArray = _get64bitArrayFromFloat(millisecondsSince1970);
        if(!_cachedMillisecondsBetween1582and1970){
         var arraySecondsPerHour = _get64bitArrayFromFloat(60 * 60);
         var arrayHoursBetween1582and1970 = _get64bitArrayFromFloat(dojox.uuid.generateTimeBasedUuid._generator.GREGORIAN_CHANGE_OFFSET_IN_HOURS);
         var arraySecondsBetween1582and1970 = _multiplyTwo64bitArrays(arrayHoursBetween1582and1970, arraySecondsPerHour);
         var arrayMillisecondsPerSecond = _get64bitArrayFromFloat(1000);
         _cachedMillisecondsBetween1582and1970 = _multiplyTwo64bitArrays(arraySecondsBetween1582and1970, arrayMillisecondsPerSecond);
         _cachedHundredNanosecondIntervalsPerMillisecond = _get64bitArrayFromFloat(10000);
        }
        var arrayMillisecondsSince1970 = nowArray;
        var arrayMillisecondsSince1582 = _addTwo64bitArrays(_cachedMillisecondsBetween1582and1970, arrayMillisecondsSince1970);
        var arrayHundredNanosecondIntervalsSince1582 = _multiplyTwo64bitArrays(arrayMillisecondsSince1582, _cachedHundredNanosecondIntervalsPerMillisecond);

       
        if(now.valueOf() == _dateValueOfPreviousUuid){
         arrayHundredNanosecondIntervalsSince1582[3] += _nextIntraMillisecondIncrement;
         _carry(arrayHundredNanosecondIntervalsSince1582);
         _nextIntraMillisecondIncrement += 1;
         if (_nextIntraMillisecondIncrement == 10000) {
          // If we've gotten to here, it means we've already generated 10,000
          // UUIDs in this single millisecond, which is the most that the UUID
          // timestamp field allows for. So now we'll just sit here and wait
          // for a fraction of a millisecond, so as to ensure that the next
          // time this method is called there will be a different millisecond
          // value in the timestamp field.
          while (now.valueOf() == _dateValueOfPreviousUuid) {
           now = new Date();
          }
         }
        }else{
         _dateValueOfPreviousUuid = now.valueOf();
         _nextIntraMillisecondIncrement = 1;
        }

       
        var hexTimeLowLeftHalf = arrayHundredNanosecondIntervalsSince1582[2].toString(HEX_RADIX);
        var hexTimeLowRightHalf = arrayHundredNanosecondIntervalsSince1582[3].toString(HEX_RADIX);
        var hexTimeLow = _padWithLeadingZeros(hexTimeLowLeftHalf, 4) + _padWithLeadingZeros(hexTimeLowRightHalf, 4);
        var hexTimeMid = arrayHundredNanosecondIntervalsSince1582[1].toString(HEX_RADIX);
        hexTimeMid = _padWithLeadingZeros(hexTimeMid, 4);
        var hexTimeHigh = arrayHundredNanosecondIntervalsSince1582[0].toString(HEX_RADIX);
        hexTimeHigh = _padWithLeadingZeros(hexTimeHigh, 3);
        var hyphen = "-";
        var versionCodeForTimeBasedUuids = "1"; // binary2hex("0001")
        var resultUuid = hexTimeLow + hyphen + hexTimeMid + hyphen +
           versionCodeForTimeBasedUuids + hexTimeHigh + hyphen +
           _uuidClockSeqString + hyphen + node;
        resultUuid = resultUuid.toLowerCase();
        return resultUuid; // String (a 36 character string, which will look something like "b4308fb0-86cd-11da-a72b-0800200c9a66")
    • summary
      Generates a time-based UUID, meaning a version 1 UUID.
    • description
      JavaScript code running in a browser doesn't have access to the
      IEEE 802.3 address of the computer, so if a node value isn't
      supplied, we generate a random pseudonode value instead.
    • returns
      String (a 36 character string, which will look something like "b4308fb0-86cd-11da-a72b-0800200c9a66")
  • dojox.uuid

    • type
      Object
    • summary
  • dojox

    • type
      Object
    • summary