dojox/sql/_crypto.js

  • Provides:

    • dojox.sql._crypto
  • dojox.sql._crypto._POOL_SIZE

    • summary
  • dojox.sql._crypto.encrypt

    • type
      Function
    • parameters:
      • plaintext: (typeof )
      • password: (typeof )
      • callback: (typeof )
    • source: [view]
        this._initWorkerPool();


        var msg ={plaintext: plaintext, password: password};
        msg = dojo.toJson(msg);
        msg = "encr:" + String(msg);


        this._assignWork(msg, callback);
    • summary
      Use Corrected Block TEA to encrypt plaintext using password
      (note plaintext & password must be strings not string objects).
      Results will be returned to the 'callback' asychronously.
  • dojox.sql._crypto.decrypt

    • type
      Function
    • parameters:
      • ciphertext: (typeof )
      • password: (typeof )
      • callback: (typeof )
    • source: [view]
        this._initWorkerPool();


        var msg = {ciphertext: ciphertext, password: password};
        msg = dojo.toJson(msg);
        msg = "decr:" + String(msg);


        this._assignWork(msg, callback);
    • summary
      Use Corrected Block TEA to decrypt ciphertext using password
      (note ciphertext & password must be strings not string objects).
      Results will be returned to the 'callback' asychronously.
  • dojox.sql._crypto._initWorkerPool

    • type
      Function
    • source: [view]
      dojo.provide("dojox.sql._crypto");
      dojo.mixin(dojox.sql._crypto, {
       // summary: dojox.sql cryptography code
       // description:
       // Taken from http://www.movable-type.co.uk/scripts/aes.html by
       //  Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
       //  by Brad Neuberg, bkn3@columbia.edu
       //
       // _POOL_SIZE:
       // Size of worker pool to create to help with crypto
       _POOL_SIZE: 100,


       encrypt: function(plaintext, password, callback){
        // summary:
        // Use Corrected Block TEA to encrypt plaintext using password
        // (note plaintext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg ={plaintext: plaintext, password: password};
        msg = dojo.toJson(msg);
        msg = "encr:" + String(msg);


        this._assignWork(msg, callback);
       },


       decrypt: function(ciphertext, password, callback){
        // summary:
        // Use Corrected Block TEA to decrypt ciphertext using password
        // (note ciphertext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg = {ciphertext: ciphertext, password: password};
        msg = dojo.toJson(msg);
        msg = "decr:" + String(msg);


        this._assignWork(msg, callback);
       },


       _initWorkerPool: function(){
        // bugs in Google Gears prevents us from dynamically creating
        // and destroying workers as we need them -- the worker
        // pool functionality stops working after a number of crypto
        // cycles (probably related to a memory leak in Google Gears).
        // this is too bad, since it results in much simpler code.


        // instead, we have to create a pool of workers and reuse them. we
        // keep a stack of 'unemployed' Worker IDs that are currently not working.
        // if a work request comes in, we pop off the 'unemployed' stack
        // and put them to work, storing them in an 'employed' hashtable,
        // keyed by their Worker ID with the value being the callback function
        // that wants the result. when an employed worker is done, we get
        // a message in our 'manager' which adds this worker back to the
        // unemployed stack and routes the result to the callback that
        // wanted it. if all the workers were employed in the past but
        // more work needed to be done (i.e. it's a tight labor pool ;)
        // then the work messages are pushed onto
        // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}


        if(!this._manager){
         try{
          this._manager = google.gears.factory.create("beta.workerpool", "1.0");
          this._unemployed = [];
          this._employed ={};
          this._handleMessage = [];

        
          var self = this;
          this._manager.onmessage = function(msg, sender){
           // get the callback necessary to serve this result
           var callback = self._employed["_" + sender];

         
           // make this worker unemployed
           self._employed["_" + sender] = undefined;
           self._unemployed.push("_" + sender);

         
           // see if we need to assign new work
           // that was queued up needing to be done
           if(self._handleMessage.length){
            var handleMe = self._handleMessage.shift();
            self._assignWork(handleMe.msg, handleMe.callback);
           }

         
           // return results
           callback(msg);
          }

         
          var workerInit = "function _workerInit(){"
               + "gearsWorkerPool.onmessage = "
                + String(this._workerHandler)
               + ";"
              + "}";

        
          var code = workerInit + " _workerInit();";


          // create our worker pool
          for(var i = 0; i < this._POOL_SIZE; i++){
           this._unemployed.push("_" + this._manager.createWorker(code));
          }
         }catch(exp){
          throw exp.message||exp;
         }
        }
    • summary
  • dojox.sql._crypto._initWorkerPool._manager

    • summary
  • dojox.sql._crypto._initWorkerPool._unemployed

    • summary
  • dojox.sql._crypto._initWorkerPool._employed

    • summary
  • dojox.sql._crypto._initWorkerPool._handleMessage

    • summary
  • dojox.sql._crypto._initWorkerPool._manager.onmessage

    • type
      Function
    • parameters:
      • msg: (typeof )
      • sender: (typeof )
    • source: [view]
      dojo.provide("dojox.sql._crypto");
      dojo.mixin(dojox.sql._crypto, {
       // summary: dojox.sql cryptography code
       // description:
       // Taken from http://www.movable-type.co.uk/scripts/aes.html by
       //  Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
       //  by Brad Neuberg, bkn3@columbia.edu
       //
       // _POOL_SIZE:
       // Size of worker pool to create to help with crypto
       _POOL_SIZE: 100,


       encrypt: function(plaintext, password, callback){
        // summary:
        // Use Corrected Block TEA to encrypt plaintext using password
        // (note plaintext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg ={plaintext: plaintext, password: password};
        msg = dojo.toJson(msg);
        msg = "encr:" + String(msg);


        this._assignWork(msg, callback);
       },


       decrypt: function(ciphertext, password, callback){
        // summary:
        // Use Corrected Block TEA to decrypt ciphertext using password
        // (note ciphertext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg = {ciphertext: ciphertext, password: password};
        msg = dojo.toJson(msg);
        msg = "decr:" + String(msg);


        this._assignWork(msg, callback);
       },


       _initWorkerPool: function(){
        // bugs in Google Gears prevents us from dynamically creating
        // and destroying workers as we need them -- the worker
        // pool functionality stops working after a number of crypto
        // cycles (probably related to a memory leak in Google Gears).
        // this is too bad, since it results in much simpler code.


        // instead, we have to create a pool of workers and reuse them. we
        // keep a stack of 'unemployed' Worker IDs that are currently not working.
        // if a work request comes in, we pop off the 'unemployed' stack
        // and put them to work, storing them in an 'employed' hashtable,
        // keyed by their Worker ID with the value being the callback function
        // that wants the result. when an employed worker is done, we get
        // a message in our 'manager' which adds this worker back to the
        // unemployed stack and routes the result to the callback that
        // wanted it. if all the workers were employed in the past but
        // more work needed to be done (i.e. it's a tight labor pool ;)
        // then the work messages are pushed onto
        // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}


        if(!this._manager){
         try{
          this._manager = google.gears.factory.create("beta.workerpool", "1.0");
          this._unemployed = [];
          this._employed ={};
          this._handleMessage = [];

        
          var self = this;
          this._manager.onmessage = function(msg, sender){
           // get the callback necessary to serve this result
           var callback = self._employed["_" + sender];

         
           // make this worker unemployed
           self._employed["_" + sender] = undefined;
           self._unemployed.push("_" + sender);

         
           // see if we need to assign new work
           // that was queued up needing to be done
           if(self._handleMessage.length){
            var handleMe = self._handleMessage.shift();
            self._assignWork(handleMe.msg, handleMe.callback);
           }

         
           // return results
           callback(msg);
    • summary
  • dojox.sql._crypto._assignWork

    • type
      Function
    • parameters:
      • msg: (typeof )
      • callback: (typeof )
    • source: [view]
      dojo.provide("dojox.sql._crypto");
      dojo.mixin(dojox.sql._crypto, {
       // summary: dojox.sql cryptography code
       // description:
       // Taken from http://www.movable-type.co.uk/scripts/aes.html by
       //  Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
       //  by Brad Neuberg, bkn3@columbia.edu
       //
       // _POOL_SIZE:
       // Size of worker pool to create to help with crypto
       _POOL_SIZE: 100,


       encrypt: function(plaintext, password, callback){
        // summary:
        // Use Corrected Block TEA to encrypt plaintext using password
        // (note plaintext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg ={plaintext: plaintext, password: password};
        msg = dojo.toJson(msg);
        msg = "encr:" + String(msg);


        this._assignWork(msg, callback);
       },


       decrypt: function(ciphertext, password, callback){
        // summary:
        // Use Corrected Block TEA to decrypt ciphertext using password
        // (note ciphertext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg = {ciphertext: ciphertext, password: password};
        msg = dojo.toJson(msg);
        msg = "decr:" + String(msg);


        this._assignWork(msg, callback);
       },


       _initWorkerPool: function(){
        // bugs in Google Gears prevents us from dynamically creating
        // and destroying workers as we need them -- the worker
        // pool functionality stops working after a number of crypto
        // cycles (probably related to a memory leak in Google Gears).
        // this is too bad, since it results in much simpler code.


        // instead, we have to create a pool of workers and reuse them. we
        // keep a stack of 'unemployed' Worker IDs that are currently not working.
        // if a work request comes in, we pop off the 'unemployed' stack
        // and put them to work, storing them in an 'employed' hashtable,
        // keyed by their Worker ID with the value being the callback function
        // that wants the result. when an employed worker is done, we get
        // a message in our 'manager' which adds this worker back to the
        // unemployed stack and routes the result to the callback that
        // wanted it. if all the workers were employed in the past but
        // more work needed to be done (i.e. it's a tight labor pool ;)
        // then the work messages are pushed onto
        // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}


        if(!this._manager){
         try{
          this._manager = google.gears.factory.create("beta.workerpool", "1.0");
          this._unemployed = [];
          this._employed ={};
          this._handleMessage = [];

        
          var self = this;
          this._manager.onmessage = function(msg, sender){
           // get the callback necessary to serve this result
           var callback = self._employed["_" + sender];

         
           // make this worker unemployed
           self._employed["_" + sender] = undefined;
           self._unemployed.push("_" + sender);

         
           // see if we need to assign new work
           // that was queued up needing to be done
           if(self._handleMessage.length){
            var handleMe = self._handleMessage.shift();
            self._assignWork(handleMe.msg, handleMe.callback);
           }

         
           // return results
           callback(msg);
          }

         
          var workerInit = "function _workerInit(){"
               + "gearsWorkerPool.onmessage = "
                + String(this._workerHandler)
               + ";"
              + "}";

        
          var code = workerInit + " _workerInit();";


          // create our worker pool
          for(var i = 0; i < this._POOL_SIZE; i++){
           this._unemployed.push("_" + this._manager.createWorker(code));
          }
         }catch(exp){
          throw exp.message||exp;
         }
        }
       },


       _assignWork: function(msg, callback){
        // can we immediately assign this work?
        if(!this._handleMessage.length && this._unemployed.length){
         // get an unemployed worker
         var workerID = this._unemployed.shift().substring(1); // remove _

       
         // list this worker as employed
         this._employed["_" + workerID] = callback;

       
         // do the worke
         this._manager.sendMessage(msg, parseInt(workerID,10));
        }else{
         // we have to queue it up
         this._handleMessage ={msg: msg, callback: callback};
        }
    • summary
  • dojox.sql._crypto._assignWork._handleMessage

    • summary
  • dojox.sql._crypto._workerHandler

    • type
      Function
    • parameters:
      • msg: (typeof )
      • sender: (typeof )
    • source: [view]
      dojo.provide("dojox.sql._crypto");
      dojo.mixin(dojox.sql._crypto, {
       // summary: dojox.sql cryptography code
       // description:
       // Taken from http://www.movable-type.co.uk/scripts/aes.html by
       //  Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool
       //  by Brad Neuberg, bkn3@columbia.edu
       //
       // _POOL_SIZE:
       // Size of worker pool to create to help with crypto
       _POOL_SIZE: 100,


       encrypt: function(plaintext, password, callback){
        // summary:
        // Use Corrected Block TEA to encrypt plaintext using password
        // (note plaintext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg ={plaintext: plaintext, password: password};
        msg = dojo.toJson(msg);
        msg = "encr:" + String(msg);


        this._assignWork(msg, callback);
       },


       decrypt: function(ciphertext, password, callback){
        // summary:
        // Use Corrected Block TEA to decrypt ciphertext using password
        // (note ciphertext & password must be strings not string objects).
        // Results will be returned to the 'callback' asychronously.
        this._initWorkerPool();


        var msg = {ciphertext: ciphertext, password: password};
        msg = dojo.toJson(msg);
        msg = "decr:" + String(msg);


        this._assignWork(msg, callback);
       },


       _initWorkerPool: function(){
        // bugs in Google Gears prevents us from dynamically creating
        // and destroying workers as we need them -- the worker
        // pool functionality stops working after a number of crypto
        // cycles (probably related to a memory leak in Google Gears).
        // this is too bad, since it results in much simpler code.


        // instead, we have to create a pool of workers and reuse them. we
        // keep a stack of 'unemployed' Worker IDs that are currently not working.
        // if a work request comes in, we pop off the 'unemployed' stack
        // and put them to work, storing them in an 'employed' hashtable,
        // keyed by their Worker ID with the value being the callback function
        // that wants the result. when an employed worker is done, we get
        // a message in our 'manager' which adds this worker back to the
        // unemployed stack and routes the result to the callback that
        // wanted it. if all the workers were employed in the past but
        // more work needed to be done (i.e. it's a tight labor pool ;)
        // then the work messages are pushed onto
        // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback}


        if(!this._manager){
         try{
          this._manager = google.gears.factory.create("beta.workerpool", "1.0");
          this._unemployed = [];
          this._employed ={};
          this._handleMessage = [];

        
          var self = this;
          this._manager.onmessage = function(msg, sender){
           // get the callback necessary to serve this result
           var callback = self._employed["_" + sender];

         
           // make this worker unemployed
           self._employed["_" + sender] = undefined;
           self._unemployed.push("_" + sender);

         
           // see if we need to assign new work
           // that was queued up needing to be done
           if(self._handleMessage.length){
            var handleMe = self._handleMessage.shift();
            self._assignWork(handleMe.msg, handleMe.callback);
           }

         
           // return results
           callback(msg);
          }

         
          var workerInit = "function _workerInit(){"
               + "gearsWorkerPool.onmessage = "
                + String(this._workerHandler)
               + ";"
              + "}";

        
          var code = workerInit + " _workerInit();";


          // create our worker pool
          for(var i = 0; i < this._POOL_SIZE; i++){
           this._unemployed.push("_" + this._manager.createWorker(code));
          }
         }catch(exp){
          throw exp.message||exp;
         }
        }
       },


       _assignWork: function(msg, callback){
        // can we immediately assign this work?
        if(!this._handleMessage.length && this._unemployed.length){
         // get an unemployed worker
         var workerID = this._unemployed.shift().substring(1); // remove _

       
         // list this worker as employed
         this._employed["_" + workerID] = callback;

       
         // do the worke
         this._manager.sendMessage(msg, parseInt(workerID,10));
        }else{
         // we have to queue it up
         this._handleMessage ={msg: msg, callback: callback};
        }
       },


       _workerHandler: function(msg, sender){

       
        /* Begin AES Implementation */

       
        /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

       
        // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1]
        var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
            0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
            0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
            0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
            0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
            0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
            0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
            0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
            0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
            0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
            0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
            0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
            0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
            0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
            0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
            0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];


        // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
        var Rcon = [ [0x00, 0x00, 0x00, 0x00],
            [0x01, 0x00, 0x00, 0x00],
            [0x02, 0x00, 0x00, 0x00],
            [0x04, 0x00, 0x00, 0x00],
            [0x08, 0x00, 0x00, 0x00],
            [0x10, 0x00, 0x00, 0x00],
            [0x20, 0x00, 0x00, 0x00],
            [0x40, 0x00, 0x00, 0x00],
            [0x80, 0x00, 0x00, 0x00],
            [0x1b, 0x00, 0x00, 0x00],
            [0x36, 0x00, 0x00, 0x00] ];


        /*
         * AES Cipher function: encrypt 'input' with Rijndael algorithm
         *
         *  takes  byte-array 'input' (16 bytes)
         *    2D byte-array key schedule 'w' (Nr+1 x Nb bytes)
         *
         *  applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
         *
         *  returns byte-array encrypted value (16 bytes)
         */
        function Cipher(input, w) {  // main Cipher function [§5.1]
         var Nb = 4;    // block size (in words): no of columns in state (fixed at 4 for AES)
         var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys


         var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4]
         for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];


         state = AddRoundKey(state, w, 0, Nb);


         for (var round=1; round   state = SubBytes(state, Nb);
         state = ShiftRows(state, Nb);
         state = MixColumns(state, Nb);
         state = AddRoundKey(state, w, round, Nb);
         }


         state = SubBytes(state, Nb);
         state = ShiftRows(state, Nb);
         state = AddRoundKey(state, w, Nr, Nb);


         var output = new Array(4*Nb);  // convert state to 1-d array before returning [§3.4]
         for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
         return output;
        }




        function SubBytes(s, Nb) {  // apply SBox to state S [§5.1.1]
         for (var r=0; r<4; r++) {
         for (var c=0; c   }
         return s;
        }




        function ShiftRows(s, Nb) {  // shift row r of state S left by r bytes [§5.1.2]
         var t = new Array(4);
         for (var r=1; r<4; r++) {
         for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy
         for (var c=0; c<4; c++) s[r][c] = t[c];   // and copy back
         }    // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
         return s;  // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
        }




        function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3]
         for (var c=0; c<4; c++) {
         var a = new Array(4); // 'a' is a copy of the current column from 's'
         var b = new Array(4); // 'b' is a•{02} in GF(2^8)
         for (var i=0; i<4; i++) {
          a[i] = s[i][c];
          b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
         }
         // a[n] ^ b[n] is a•{03} in GF(2^8)
         s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
         s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
         s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
         s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
         }
         return s;
        }




        function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4]
         for (var r=0; r<4; r++) {
         for (var c=0; c   }
         return state;
        }




        function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
         var Nb = 4;    // block size (in words): no of columns in state (fixed at 4 for AES)
         var Nk = key.length/4  // key length (in words): 4/6/8 for 128/192/256-bit keys
         var Nr = Nk + 6;   // no of rounds: 10/12/14 for 128/192/256-bit keys


         var w = new Array(Nb*(Nr+1));
         var temp = new Array(4);


         for (var i=0; i   var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
         w[i] = r;
         }


         for (var i=Nk; i<(Nb*(Nr+1)); i++) {
         w[i] = new Array(4);
         for (var t=0; t<4; t++) temp[t] = w[i-1][t];
         if (i % Nk == 0) {
          temp = SubWord(RotWord(temp));
          for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t];
         } else if (Nk > 6 && i%Nk == 4) {
          temp = SubWord(temp);
         }
         for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
         }


         return w;
        }


        function SubWord(w) {  // apply SBox to 4-byte word w
         for (var i=0; i<4; i++) w[i] = Sbox[w[i]];
         return w;
        }


        function RotWord(w) {  // rotate 4-byte word w left by one byte
         w[4] = w[0];
         for (var i=0; i<4; i++) w[i] = w[i+1];
         return w;
        }


        /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */


        /*
         * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation
         *        - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
         *  for each block
         *  - outputblock = cipher(counter, key)
         *  - cipherblock = plaintext xor outputblock
         */
        function AESEncryptCtr(plaintext, password, nBits) {
         if (!(nBits==128 || nBits==192 || nBits==256)) return '';  // standard allows 128/192/256 bit keys


         // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password;
         // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1
         var nBytes = nBits/8;  // no bytes in key
         var pwBytes = new Array(nBytes);
         for (var i=0; i

         var key = Cipher(pwBytes, KeyExpansion(pwBytes));


         key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long


         // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes,
         // block counter in 2nd 8 bytes
         var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
         var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
         var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970


         // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops
         for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff;
         for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff;


         // generate key schedule - an expansion of the key into distinct Key Rounds for each round
         var keySchedule = KeyExpansion(key);


         var blockCount = Math.ceil(plaintext.length/blockSize);
         var ciphertext = new Array(blockCount); // ciphertext as array of strings


         for (var b=0; b   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
         // again done in two stages for 32-bit ops
         for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
         for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)


         var cipherCntr = Cipher(counterBlock, keySchedule);  // -- encrypt counter block --


         // calculate length of final block:
         var blockLength = b

         var ct = '';
         for (var i=0; i    var plaintextByte = plaintext.charCodeAt(b*blockSize+i);
          var cipherByte = plaintextByte ^ cipherCntr[i];
          ct += String.fromCharCode(cipherByte);
         }
         // ct is now ciphertext for this block


         ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext
         }


         // convert the nonce to a string to go on the front of the ciphertext
         var ctrTxt = '';
         for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
         ctrTxt = escCtrlChars(ctrTxt);


         // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency
         return ctrTxt + '-' + ciphertext.join('-');
        }




        /*
         * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation
         *
         *  for each block
         *  - outputblock = cipher(counter, key)
         *  - cipherblock = plaintext xor outputblock
         */
        function AESDecryptCtr(ciphertext, password, nBits) {
         if (!(nBits==128 || nBits==192 || nBits==256)) return '';  // standard allows 128/192/256 bit keys


         var nBytes = nBits/8;  // no bytes in key
         var pwBytes = new Array(nBytes);
         for (var i=0; i   var pwKeySchedule = KeyExpansion(pwBytes);
         var key = Cipher(pwBytes, pwKeySchedule);
         key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long


         var keySchedule = KeyExpansion(key);


         ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings


         // recover nonce from 1st element of ciphertext
         var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
         var counterBlock = new Array(blockSize);
         var ctrTxt = unescCtrlChars(ciphertext[0]);
         for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);


         var plaintext = new Array(ciphertext.length-1);


         for (var b=1; b   // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
         for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff;
         for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff;


         var cipherCntr = Cipher(counterBlock, keySchedule);  // encrypt counter block


         ciphertext[b] = unescCtrlChars(ciphertext[b]);


         var pt = '';
         for (var i=0; i    // -- xor plaintext with ciphered counter byte-by-byte --
          var ciphertextByte = ciphertext[b].charCodeAt(i);
          var plaintextByte = ciphertextByte ^ cipherCntr[i];
          pt += String.fromCharCode(plaintextByte);
         }
         // pt is now plaintext for this block


         plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext
         }


         return plaintext.join('');
        }


        /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */


        function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext
         return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; });
        } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker


        function unescCtrlChars(str) { // unescape potentially problematic control characters
         return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); });
        }


        /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

       
        function encrypt(plaintext, password){
         return AESEncryptCtr(plaintext, password, 256);
        }


        function decrypt(ciphertext, password){
         return AESDecryptCtr(ciphertext, password, 256);
        }

       
        /* End AES Implementation */

       
        var cmd = msg.substr(0,4);
        var arg = msg.substr(5);
        if(cmd == "encr"){
         arg = eval("(" + arg + ")");
         var plaintext = arg.plaintext;
         var password = arg.password;
         var results = encrypt(plaintext, password);
         gearsWorkerPool.sendMessage(String(results), sender);
        }else if(cmd == "decr"){
         arg = eval("(" + arg + ")");
         var ciphertext = arg.ciphertext;
         var password = arg.password;
         var results = decrypt(ciphertext, password);
         gearsWorkerPool.sendMessage(String(results), sender);
        }
    • returns
      convert state to 1-d array before returning [§3.4]|see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf|standard allows 128/192/256 bit keys
    • summary
  • dojox.sql._crypto

    • type
      Object
    • summary
  • dojox.sql

    • type
      Object
    • summary
  • dojox

    • type
      Object
    • summary